OEM Level sensing pressure transmitter
Operating instructions
Safety Guidelines

These instructions contain notices intended to ensure personal safety, as well as to protect the products and connected equipment against damage. These notices are highlighted by the symbols shown below and graded according to severity by the following texts.

⚠️ **DANGER**

This warning signifies an imminent danger. Injuries or even death can arise from failing the warnings.

⚠️ **CAUTION**

This warning signifies a potential danger. Injuries or even death can arise from failing the warnings.

⚠️ **ATTENTION**

This warning signifies a potential dangerous situation, which can lead to medium or light injuries.

⚠️ Only trained qualified personnel shall execute this work.
General Notes

NOTE
Dear customer,

for reasons of clarity the instructions does not contain detailed information about all types of products and cannot take into account every conceivable case of installation, operation or maintenance.

If you require further information or should problems occur which are not sufficiently explained in the instructions, you can consult your local Huba Control branch to obtain the necessary information.

May we also draw your attention to the fact that the contents of the operating instructions are not part of a previous or existing agreement, approval or legal relationship or an amendment thereof. All obligations of the Huba Control AG result from the contract of purchase which also contains the full and solely valid warranty agreement. These contractual warranty conditions are neither extended nor restricted by the contents of the operating instructions.

The contents reflect the technical state at the time of going to print. Subject to technical modifications in the course of further development.

CAUTION
Intrinsically safe devices lose their license as soon as they are operated on circuits which do not meet the requirements of the examination certificate valid in your country. The device may be operated with high pressure and corrosive media. Therefore serious injuries and/or considerable material damage cannot be ruled out in the event of improper handling of the device.

The equipment may only be used for the purposes specified in this operating instructions.
Qualified Personnel

are persons familiar with the installation, assembly, commissioning and operation of the product and who have the appropriate qualifications for their activities such as:
• training or instruction or authorization to operate and maintain devices/systems according to the standard of safety technology for electrical circuits, high pressures and corrosive as well as hazardous media.
• for devices with explosion protection: training or instruction or authorization to be allowed to work on electrical circuits for potentially explosive systems.
• training or instruction according to the standards of safety engineering in the care and use of suitable safety equipment.

⚠️ Only trained qualified personnel shall execute this work.

Modules which are sensitive to electrostatic charge may be destroyed by voltages which are far below the human level of perception. These voltages occur already when you touch a component or electrical connections of a module without first discharging yourself electrostatically. The damage incurred by a module as a result of an overvoltage is not usually immediately perceptible but only becomes noticeable after a long time in operation. Therefore, a suitable equipotential bonding must be guaranteed when repairing the device.

The date of manufacture can be seen on the label of the pressure level transmitter, for example: YYMMDD-XXX-XX-XXXX

- YYMMDD - example 100912
Application in hazardous area with current output 4 ... 20 mA)

The operation is acceptable into the intrinsically safe circuits only, with the following maximum values:

- **Power supply** $U_i \leq 30 \, \text{V}$
- **Current** $I_i \leq 100 \, \text{mA}$
- **Power dissipation** $P_i \leq 750 \, \text{mW}$

Consider the following data:

The length of the cable, which conveys the input/output signal, must be taken in consideration because of its internal inductivity and capacity:

- **Internal capacitance** $C_i = 0 \, \text{nF} + 0.08 \, \text{nF/m}$
- **Internal inductance** $L_i = 0 \, \text{µH} + 1.0 \, \text{µH/m}$

Mark in accordance acc. RL 2014/34/EU

- **Protection type mark** Ex ia IIC T4 Ga

The maximum allowable operating temperature T_a is from -20 to +80 °C. For the applications as Category-1 apparatus the maximum allowable operating temperature should be maximum +60 °C. The transmitter can be used in open tanks, channels etc.

For the applications as Category-1 apparatus group IIC is not allowed the critical electrostatic charging over the protection cap surface.

The valid standards and rules should to be considered during the installation of devices.
Application in hazardous area with ratiom. output 10 ... 90%)

The operation is acceptable into the intrinsically safe circuits only, with the following maximum values:

- Power supply \(U_i \leq 15 \text{ V} \)
- Current \(I_i \leq 250 \text{ mA} \)
- Power dissipation \(P_i \leq 750 \text{ mW} \)

Consider the following data:

The length of the cable, which conveys the input/output signal, must be taken in consideration because of its internal inductivity and capacity:

- Internal capacitance \(C_i = 0.5 \text{ nF} + 0.08 \text{ nF/m} \)
- Internal inductance \(L_i = 0 \text{ µH} + 1.0 \text{ µH/m} \)

Mark in accordance acc. RL 2014/34/EU Ex ia IIC T4 Ga

The maximum allowable operating temperature \(T_a \) is from -20 to +80 \(^\circ\text{C} \). For the applications as Category-1- apparatus the maximum allowable operating temperature should be maximum +60 \(^\circ\text{C} \). The transmitter can be used in open tanks, channels etc.

For the applications as **Category-1- apparatus group IIC** is not allowed the critical electrostatic charging over the protection cap surface.

The valid standards and rules should to be considered during the installation of devices.
Construction

The level sensor consists of a ceramic measuring cell (relative and absolute pressure) with an amplified electronic and is adjusted in the requested pressure range. The sensor, the electronic and the connection cable are hermetically encapsulated in a stainless steel case. The measuring diaphragm is protected from outside influences by a protection cover. A venting pipe is included in the connection cable for the relative version. The sensor, the electronic and the connection cable are placed in a hermetic encapsulated small case. The wide temperature range of the level sensor is compensated.

Application

The Type 712 transmitter is used for hydrostatic measurement of liquid levels, e.g. in water supply, ship installations, in the oil and gas industry etc. The calculation of the temperature related to the power supply with NTC resistance is as follows:

\[
T_{\text{TEMP}} = T_0 + 1 \left(a + b \cdot \ln \left(R \cdot \left(\frac{U_{\text{IN}}}{\text{OUT} T} - 1 \right) \right) + c \cdot \ln \left(R \cdot \left(\frac{U_{\text{IN}}}{\text{OUT} T} - 1 \right)^3 \right) \right)
\]

CAUTION

Consider the chemical resistance of sensor, case, O-ring and connection cable with the media.
Calculation of level

General level with relative pressure sensor:

\[h = \frac{\Delta p}{\rho \cdot g} \]

General level with absolute pressure sensor:

\[h = \frac{P_{TS} - P_{Baro}}{\rho \cdot g} \]

which

\[P_{TS} = \frac{U_{TS} - U_{TS_NP}}{U_{TS_EW} - U_{TS_NP}} \cdot (P_{TS_EW} - P_{TS_NP}) + P_{TS_NP} \]

and

\[P_{Baro} = \frac{U_{Baro} - U_{Baro_NP}}{U_{Baro_EW} - U_{Baro_NP}} \cdot (P_{Baro_EW} - P_{Baro_NP}) + P_{Baro_NP} \]

Using a second level sensor as barometric air pressure sensor.

For level sensor with current output use nominal signal values for \(I_{TS} \) instead of variables \(I_{TS} \) (resp. \(I_{Baro} \) instead of \(U_{Baro} \)).

Simplification of formula for level sensor with ratiometric output:

\[P_{TS} = \frac{U_{TS} - 0.1 \cdot U_{IN}}{0.8 \cdot U_{IN}} \cdot (P_{TS_EW} - P_{TS_NP}) + P_{TS_NP} \]

\[P_{Baro} = \frac{U_{Baro} - 0.1 \cdot U_{IN}}{0.8 \cdot U_{IN}} \cdot (P_{Baro_EW} - P_{Baro_NP}) + P_{Baro_NP} \]

Using a second level sensor as barometric air pressure sensor.

Legende:

- \(h \) level [m]
- \(\rho \) density of media [kg/m\(^3\)]
- \(g \) acceleration of fall 9.80665 [m/s\(^2\)]
- \(\Delta p \) measured relative pressure [Pa]
- \(P_{TS} \) measured pressure of level sensor [Pa]
- \(P_{Baro} \) measured pressure of barometer [Pa]
- \(P_{TS_NP} \) minimal nominal pressure of level sensor [Pa]
- \(P_{TS_EW} \) maximum nominal pressure of level sensor [Pa]
- \(P_{Baro_NP} \) minimal nominal pressure of barometer [Pa]
- \(P_{Baro_EW} \) maximum nominal pressure of barometer [Pa]
- \(U_{TS} \) signal on level sensor output [V or mA]
- \(U_{Baro} \) Signal on barometer output [V or mA]
- \(U_{TS_NP} \) minimal nominal signal of level sensor [V or mA]
- \(U_{TS_EW} \) maximum nominal signal of level sensor [V or mA]
- \(U_{Baro_NP} \) minimal nominal signal of barometer [V or mA]
- \(U_{Baro_EW} \) maximum nominal signal of barometer [V or mA]
Mode of operation

The pressure of the medium acts on the keramic sensor which is deflected to transmit the pressure to the piezo-resistive bridge in the measuring sensor. Every sensor is compensated for changes in temperature and operates within a wide temperature range.

The output signal of the sensor is fed to an electronic circuit which converts it into a standard voltage and current output. The hydrostatic pressure which is proportional to the submersion depth acts on the diaphragm of the sensor. This pressure is compared with the atmospheric pressure which acts on the other side of the sensor by means of the vent pipe in the connecting cable (at relative pressure).

Installation

The level pressure transmitter 712 is installed hanging downwards on the cable. In moving media, the transmitter must be fixed to prevent measuring errors. This can be done with a guide tube. Make sure that the inlet openings on the protective cap of the level pressure transmitter are not soiled in order to guarantee perfect functioning.

Calibration

The transmitter has been calibrated to the measuring range at the factory and cannot be re-calibrated.

Maintenance

The level transmitter requires no maintenance.
Operating conditions

The following points should be noted particularly when using the device:

- The maximum permissible pressure p_{max} of the transmitter may not be exceeded.
- The temperature of the medium in contact with the transmitter may not exceed $80 \, ^\circ C$.
- Avoid formation of ice on the process input of the transmitter because this could damage the diaphragm.
- Prevent soiling of the transmitter input.
- Avoid obstruction to the vent pipes in the special cable (influences the measuring accuracy).
- The effects of UV radiation can cause materials to become brittle. Protect the level sensing pressure transmitter from direct sunlight.
- The device should only be supplied with limited energy according to UL 61010-1 Second Edition, Section 9.3 or LPS in conformance with UL 60950-1 or class 2 in compliance with UL 1310 or UL 1585.

Conditions during operation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient conditions</td>
<td>Outdoor and indoor use</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-20 ... +80 °C</td>
</tr>
<tr>
<td>Altitude</td>
<td>max. 2000m ASL, Use an appropriate power supply for altitudes higher than 2000 m ASL</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>0 ... 100%</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40 ... +80 °C</td>
</tr>
</tbody>
</table>
Technical overview

<table>
<thead>
<tr>
<th>Temperature Medium</th>
<th>Storage</th>
<th>Overload / rupture pressure</th>
<th>3 x fs</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20 ... +80 °C</td>
<td>-40 ... +80 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Power supply</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ... 20 mA</td>
<td>10 ... 30 VDC</td>
<td>0.02 A [Ohm]</td>
</tr>
<tr>
<td>ratiom. 10 ... 90%</td>
<td>5 VDC ±10%</td>
<td>> 10 kOhm / < 100 nF</td>
</tr>
<tr>
<td>ratiom. 10 ... 90%</td>
<td>5 VDC ±10% wiht temp.</td>
<td>> 10 kOhm / < 100 nF</td>
</tr>
<tr>
<td>0 ... 10 V</td>
<td>12 ... 30 VDC</td>
<td>> 10 kOhm / < 100 nF</td>
</tr>
</tbody>
</table>

Polarity reversal protection
Short circuit proof and protected against polarity reversal. Each connection is protected against crossover up to max. supply voltage.

Protection standard
IP 68

Materials
- Sensor: Ceramic Al₂O₃ (96%)
- Case: Stainless steel 1.4404 / AISI 316L
- Cable: PE
- Protection cover: PPE
- Sealing material: FPM, EPDM

Test / Admissions
- Electromagnetic compatibility: CE-conform acc. EN 61326-2-3
- UL: ANSI/UL 61010-1 acc. E325110
- Drinking water approval: ACS
- Ex-protection ¹: Ex II 1G Ex ia IIC T4 Ga

Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable hanger</td>
<td>118026</td>
</tr>
<tr>
<td>Connection box</td>
<td>118027</td>
</tr>
<tr>
<td>Test adapter</td>
<td>118028</td>
</tr>
<tr>
<td>Protection cover (pack of 10)</td>
<td>118068</td>
</tr>
<tr>
<td>additional weight</td>
<td>118093</td>
</tr>
<tr>
<td>Humidity protection element (pack of 10)</td>
<td>118067</td>
</tr>
</tbody>
</table>

¹) Max. cable length is 500 m
Electrical connections

Device design with explosion protection: 4 ... 20 mA
The grounding connection is conductively connected to the level transmitter housing. The ground conductor of level transmitter must be connected to the equipotential bonding system of the plant.

Device design with explosion protection: ratiom. 10 ... 90%
The electronic GND is connected with a 1MΩ resistor to the level transmitter housing. The GND conductor of level transmitter must be connected to the equipotential bonding system of the plant.

Device design with explosion protection: ratiom. 10 ... 90% with temperature

Electrical connections

4 ... 20 mA
brown IN
white CASE
green OUT

ratiom. 10 ... 90%, 0 ... 10 V
brown IN
white GND
green OUT

ratiom. 10 ... 90% with temperature
brown IN
white GND
green OUT
yellow TEMP
Dimensions Accessories

Connection box

![Diagram of connection box]

1) Mounting hole
2) Vent valve

(A) Measuring value process
(B) Vent pipe
(C) To the transmitter

WARNUNG

In approved area is should be avoided electrostatic charge.

additional weight

~200 g

test adapter

1) Inside thread ISO 228/1-G ¼ A

cable hanger

- Hot-dip galvanized steel
- PA6 glass fibre reinforced
EU-Declaration of conformity

Huba Control AG
Headquarters
Industriestr. 17
CH-5436 Würenlos
Switzerland

declares under our sole responsibility that the products
to which this declaration is in conformity with the requirements of the following directives. The conformity was checked in accordance with the following harmonised EN-standards.

<table>
<thead>
<tr>
<th>Directive</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>EN 61326-2-3:2013</td>
</tr>
<tr>
<td>ATEX</td>
<td>EN 60079-0:2012</td>
</tr>
<tr>
<td></td>
<td>EN 60079-11:2012</td>
</tr>
<tr>
<td></td>
<td>EN 60079-26:2015</td>
</tr>
</tbody>
</table>

EC-type examination certificate
EG-Baumusterprüfbescheinigung
SEV 12 ATEX 0138
1258 SEV (Electrosuisse)
Luppmenstrasse 1, CH-8320 Fehraltdorf

RoHS
2011/65/EC
EN 50581:2012

Important note:
Wichtiger Hinweis:
Only versions with ATEX marking are permitted for use in potentially explosive atmospheres!
Nur Ausführungen mit ATEX-Kennzeichnung sind für den Einsatz in explosionsgefährdeten Bereichen zulässig!

Peter Anliker
Product Development

Philippe Sager
Product Manager