

Level sensing relative and absolute pressure transmitter Type 713

The pressure level transmitter type 713 is used for continuous fluid level measurement of ground and drinking water. The compact design allows the transmitter to be used in applications with restricted access as small as 34 inch i.d. pipe. As well as a current output the pressure level transmitter type 713 has been enhanced with energy efficient ratiometric and digital outputs making it ideal for battery powered applications.

The pressure level sensor 713 is based upon the well proven ceramic technology developed by Huba Control over 20 years ago.

Pressure range

0 ... 0.6 - 16 bar

- + Ceramic sensor Al₂O₃ 99.6%
- + Continuous level measurement
- + Suitable for drinking water
- + Available with integrated temperature measurement
- + Applicable in ¾ inch pipes
- + Excellent linearity and long term stability

Pressure ra	nge
-------------	-----

Relative	U U.6 - 16 Dar
Absolute	0.8 1.4 - 6 bar

Operating conditions

Medium		Groundwater
Medium		Drinking water (with EPDM O-ring)
	Medium and ambient 1)	-20 +80 °C
Temperature	Storage	-40 +80 °C
Overload	-	acc. order code selection table

Materials in contact with medium

Case	Stainless steel 1.4404 / AISI 316L
Sensor	Ceramic Al ₂ O ₃ (99.6%)
Cable	PE-HD
Protection cover	PPE
Sealing material	FPM, EPDM (for drinking water)

Electrical overview

			Outout	Power supply	Load	Current consumption
	2 wire		4 20 mA	10 30 VDC	< power supply - 10 V 0.02 A [Ohm]	< 23 mA
A 1	3 wire		ratiom. 10 90%	5 VDC ±10%	> 10 kOhm / < 100 nF	< 3 mA
Analogue	4 wire	Pressure	ratiom. 10 90%	5 VDC ±10%	> 10 kOhm / < 100 nF	< 3 mA
	(with temperature)	Temperature	acc. page 5	5 VDC ±10%	> 1 MOhm / < 100 nF	< 3 mA
Digital 2)	3 wire	Pressure	3000 11000 Digits	5 VDC ±10%		< 3 mA
(one wire interface)	(with temperature)	Temperature	acc. page 5	5 VDC ±10%		< 3 mA
Polarity reversal protection	Short circuit proof a	nd protected agair	st polarity reversal.			
Overvoltage protection				4 20 mA / 0 10 V	36 VDC	
Overvoltage protection				ratiom. 10 90 %	6 VDC	
Electric strength towards case					500 VDC	

Dynamic response

	J. Harrie Teoponoe	
R	Response time	< 2 ms

Runtime	
Time starts at the moment of application of minimal supply voltage	< 10 ms

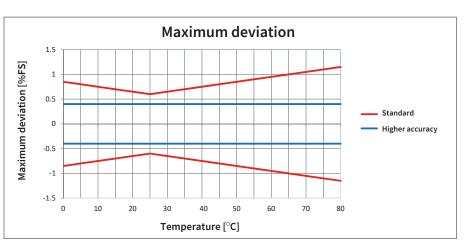
Electrical connection	Protection standard	Protection class
Cable PE-HD 2 175 m ³⁾	IP 68	

Test / Admissions

CE-conform acc. to EN 61326-2-3	
UBA guidance (KTW and elastomer)	
DVGW process sheet W270	
ACS	
WRAS	
ANSI/UL 61010-1 acc. E325110	
25 g, 6 ms, half sine wave, all 3 directions	
1 g, 2 2000 Hz with amplitude ±15 mm, 1 Octave/min. all 3 directions	
	DVGW process sheet W270 ACS WRAS ANSI/UL 61010-1 acc. E325110 25 g, 6 ms, half sine wave, all 3 directions

Weight

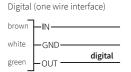
weight	
Without cable	~ 120 g

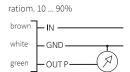

Packaging Single packaging Multiple packaging

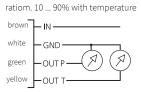
Standard

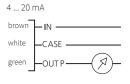
Parameter	Unit	
Max. deviation at 25 °C ⁴⁾	% fs	± 0.6
Resolution	% fs	0.1
Long term stability acc. IEC EN 60770-1 max.	% fs	± 0.25
Thermal characteristic 5)	% fs/10K	± 0.1

Higher accuracy

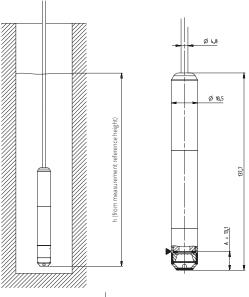

Parameter		Unit	
Max. deviation 4),5)		% fs	± 0.4
Resolution		% fs	0.1
Long term stability acc. IEC EN 60770-1	max.	% fs	± 0.25

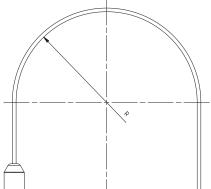



1) non-congealing media	2) Application note one wire digital out	3) for digital output max. 60 m	4) incl. zero point, full scale, linearity, hysteresis and repeatability	⁵⁾ at 0 +80 °C
-------------------------	--	---------------------------------	--	---------------------------


				1	2	3	4	5	6	7	8	9	10	11
Order code select	ion table		713.	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
	Absolute			8										
B	Relative			9										
Pressure mode	Absolute with higher a	ccuracy		С										
	Relative with higher a			D										
		overload												
	0 0.6 bar	4.8 bar		9,D	1	0								
	0 1.0 bar	4.8 bar		9,D	1	1								
Pressure range 1) (relative in bar)	0 1.6 bar	4.8 bar		9,D	1	2								
	0 2.5 bar	7.5 bar		9,D	1	4								
	0 4.0 bar	12.0 bar		9,D	1	5								
	0 6.0 bar	18.0 bar		9,D	1	7								
	0 10.0 bar	20.0 bar		9,D	3	0								
	0 16.0 bar	20.0 bar		9,D		1								
	0 10.0 00.	20.0 00.		0,0										
	0.8 1.4 bar	4.8 bar		8,C	1	1								
Pressure range 1)	0.8 2.0 bar	6.0 bar		8,C	1	2								
(absolute)	0.8 3.0 bar	9.0 bar		8,C	1	4							\rightarrow	
	0.8 6.0 bar	18.0 bar	(without UL)	8,C	1	5								
	FPM Fluoro-ela:		(Without OL)	0,0		J	0							
Sealing material		ropylene (for drinking water)					1							
	4 20 mA	10 30 VDC	2 wire (with housing connection)					0						
	ratiom. 10 90%	5 VDC ±10%	3 wire					1					\rightarrow	
Outout / power supply	ratiom. 10 90%	5 VDC ±10%	4 wire (with temperature)					2						
	3000 11000 Digits	5 VDC ±10%	3 wire (one wire interface, with temperature)					3						
	2 m	3 VDC ±10 /0	5 wire (one wire interface, with temperature)					J	0	0	1	1		
	3 m								0	1	1	1	_	
	5 m								0	2	1	1		
	7 m								0	3	1	1		
	10 m								0	4	1	1	-	
	15 m								0	5	1	1	_	
	20 m								0	6	1	1	\rightarrow	
	25 m								0	7	1	1		
Electrical connection 2)	30 m								0	8	1	1	\rightarrow	
	Cable 40 m								0	9	1	1	_	
Electrical connection 5	50 m								1	0	1	1	_	
										1		1		
	60 m							010	1		1		\rightarrow	
	70 m							0,1,2	1	2	1	1		
	80 m							0,1,2	1	3	1	1		
	90 m							0,1,2	1	4	1	1		
	100 m							0,1,2	1	5	1	1		
	125 m							0,1,2	1	6	1	1		
	150 m							0,1,2	1	7	1	1		
	175 m							0,1,2	1	8	1	1		
Admissions	without drinking wate												0	
	with drinking water ap	proval					1				1		1	
Pressure range variation														
(optional)	Indicate W and state range on order (e.g.: W 0 +2 bar/OUT 4 20 mA)													

The electronic GND is connected with a $1\mbox{M}\Omega$ resistor to the level transmitter housing.

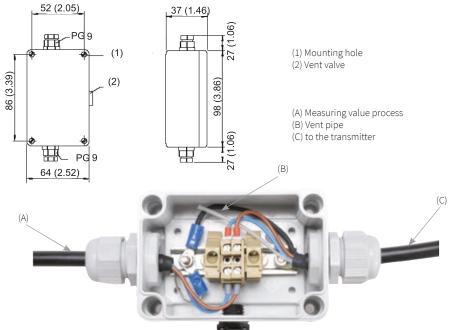


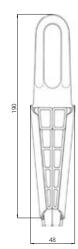


The case connection is connected with the level transmitter housing.

- h Fluid level
- ► Measurement reference height A Distance from protection cover to the position of measuring diaphragm

Bend radius


Cable material	fixed flexible		Temperature range for fixed installation					
PE	≥ 30 mm	≥ 50 mm	-40°C +80°C					


Important: The cable must NOT:

- 1. Be bent smaller than the bending radius. The individual wires on the inside are compressed, the individual wires on the outside are stretched and break off.
- 2. Be guided around sharp-edged corners. In addition to the risk of individual wires being torn off, there is also the risk of the isolation being worn through by e.g. vibration. Use cable bushings, corrugated pipes, edge protection, etc. to protect the cable when drilling holes.

Accessories (supplied loose)	Order number
Cable hanger	118026
Connection box (not suitable for output/feeding ratiometric with temp. (4-L))	118027
Humidity protection element (pack of 10)	118068
Calibration certificate	104551

hot-dip galvanized steel -PA6 glass fibre reinforced

Cable Ø 4.5 ... 6.5

Calculation of level

General level with relative pressure sensor:

$$h = \frac{\Delta p}{\rho \cdot g}$$

General level with absolute pressure sensor:

$$h = \frac{P_{TS} - P_{Baro}}{\rho \cdot g}$$

$$P_{TS} = \frac{U_{TS} - U_{TS_NP}}{U_{TS_EW} - U_{TS_NP}} \cdot \left(P_{TS_EW} - P_{TS_NP} \right) + P_{TS_NP}$$

$$P_{\textit{Baro}} = \frac{U_{\textit{Baro}} - U_{\textit{Baro}_\textit{NP}}}{U_{\textit{Baro}_\textit{EW}} - U_{\textit{Baro}_\textit{NP}}} \cdot \left(P_{\textit{Baro}_\textit{EW}} - P_{\textit{Baro}_\textit{NP}}\right) + P_{\textit{Baro}_\textit{NP}} \qquad \qquad \text{Using a second level sensor as barometric air pressure sensor}$$

For level sensor with current output use nominal signal values for I_{TS} ... instead of variables U_{TS} ... (resp. I_{Baro} ... instead of U_{Baro} ...)

Simplification of formula for level sensor with ratiometric output:

$$P_{TS} = \frac{U_{TS} - 0.1 \cdot U_{IN}}{0.8 \cdot U_{IN}} \cdot \left(P_{TS_EW} - P_{TS_NP} \right) + P_{TS_NP}$$

$$P_{\text{Baro}} = \frac{U_{\text{Baro}} - 0.1 \cdot U_{\text{IN}}}{0.8 \cdot U_{\text{IN}}} \cdot \left(P_{\text{Baro}_\text{EW}} - P_{\text{Baro}_\text{NP}}\right) + P_{\text{Baro}_\text{NP}}$$

Using a second level sensor as barometric air

Legend:

level [m]

density of media [kg/m³] ρ acceleration of fall 9.80665 [m/s²] g

measured relative pressure [Pa] Δр

 U_{TS} signal on level sensor output [V or mA]

 P_{TS} measured pressure of level sensor [Pa] measured pressure of barometer [Pa]

Signal on barometer output [V or mA] U_{BARO}

minimal nominal pressure of level sensor [Pa] $\mathsf{P}_{\mathsf{TS_EW}}$ maximum nominal pressure of level sensor [Pa] $\mathsf{P}_{\mathsf{BARO_NP}}$ minimal nominal pressure of barometer [Pa] $\mathsf{P}_{\mathsf{BARO}_{\mathsf{EW}}}$ maximum nominal pressure of barometer [Pa]

 $U_{TS\ NP}$ minimal nominal signal of level sensor [V or mA] $U_{\rm TS_EW}$ maximum nominal signal of level sensor [V or mA] $\mathsf{U}_{\mathsf{BARO_NP}}$ minimal nominal signal of barometer [V or mA] maximum nominal signal of barometer [V or mA] $U_{\text{BARO}_{\text{EW}}}$

ratiom. 10 ... 90%

$T_{TEMP} = T_0 + 1 \left| \left| a + b \cdot \ln \left(R \cdot \left[\frac{U_{IN}}{OUTT} - 1 \right] \right) + c \cdot \ln \left(R \cdot \left[\frac{U_{IN}}{OUTT} - 1 \right] \right) \right| \right|$

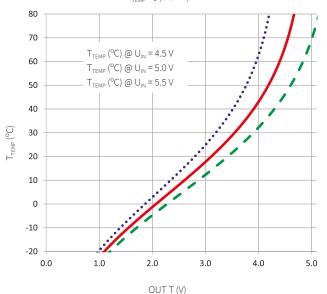
 T_{TEMP} Sensor temperature [°C] -273.15 [°C]

OUTT sensor signal [V] 20>000 [Ω]

power supply 5V ±10%

0.001204001 b 0.000208775 0.000000294

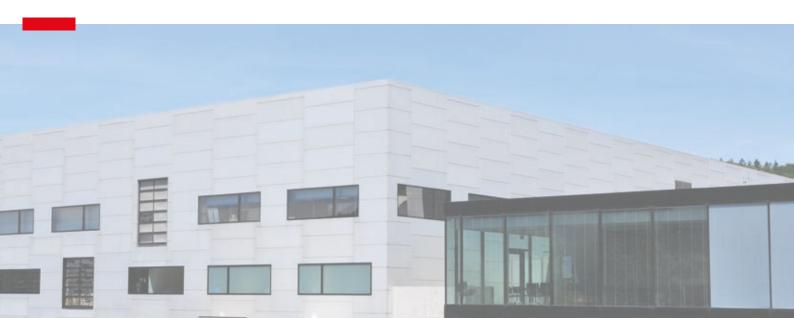
Digital


Sensor temperature [°C]

 $\mathsf{T}_{\mathsf{TEMP}}$ digital value (0 ... 255 digits)

 $T_{TEMP} = \left(\frac{T_{Dig}}{255} * 200^{\circ}C\right) - 50^{\circ}C$

Max. error ±3 °C (bei 0 ... 80 °C)



Max, error of the temperature output Difference to the measured temperature [°C] 3 1 0 -2 0 10 30 40 50 60 70 80 Temperature [°C]

Huba Control AG

Industriestrasse 17 5436 Würenlos, Switzerland Tel. +41 56 436 82 00 info.ch@hubacontrol.com

